Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Angew Chem Int Ed Engl ; : e202400476, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656762

RESUMO

The novel hetero-dinuclear complex trans,trans,trans-[PtIV(py)2(N3)2(OH)(µ-OOCCH2CH2CONHCH2-bpyMe)IrIII(ppy)2]Cl (Pt-Ir), exhibits charge transfer between the acceptor photochemotherapeutic Pt(IV) (Pt-OH) and donor photodynamic Ir(III) (Ir-NH2) fragments. It is stable in the dark, but undergoes photodecomposition more rapidly than the Pt(IV) parent complex (Pt-OH) to generate Pt(II) species, an azidyl radical and 1O2. The Ir(III)* excited state, formed after irradiation, can oxidise NADH to NAD⋅ radicals and NAD+. Pt-Ir is highly photocytotoxic towards cancer cells with a high photocytotoxicity index upon irradiation with blue light (465 nm, 4.8 mW/cm2), even with short light-exposure times (10-60 min). In contrast, the mononuclear Pt-OH and Ir-NH2 subunits and their simple mixture are much less potent. Cellular Pt accumulation was higher for Pt-Ir compared to Pt-OH. Irradiation of Pt-Ir in cancer cells damages nuclei and releases chromosomes. Synchrotron-XRF revealed ca. 4× higher levels of intracellular platinum compared to iridium in Pt-Ir treated cells under dark conditions. Luminescent Pt-Ir distributes over the whole cell and generates ROS and 1O2 within 1 h of irradiation. Iridium localises strongly in small compartments, suggestive of complex cleavage and excretion via recycling vesicles (e.g. lysosomes). The combination of PDT and PACT motifs in one molecule, provides Pt-Ir with a novel strategy for multimodal phototherapy.

2.
Adv Healthc Mater ; : e2400956, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635863

RESUMO

Photoactivable chemotherapy (PACT) using metallic complexes provides spatiotemporal selectivity over drug activation for targeted anticancer therapy. However, the poor absorption in near-infrared (NIR) light region of most metallic complexes renders tissue penetration challenging. Herein, an NIR light triggered dinuclear photoactivable Ru(II) complex (Ru2) is presented and the antitumor mechanism is comprehensively investigated. The introduction of a donor-acceptor-donor (D-A-D) linker greatly enhances the intramolecular charge transition, resulting in a high molar extinction coefficient in the NIR region with an extended triplet excited state lifetime. Most importantly, when activated by 700 nm NIR light, Ru2 exhibits unique slow photodissociation kinetics that facilitates synergistic photosensitization and photocatalytic activity to destroy diverse intracellular biomolecules. In vitro and in vivo experiments show that when activated by 700 nm NIR light, Ru2 exhibits nanomolar photocytotoxicity toward 4T1 cancer cells via the induction of calcium overload and endoplasmic reticulum (ER) stress. These findings provide a robust foundation for the development of NIR-activated Ru(II) PACT complexes for phototherapeutic application.

3.
Adv Healthc Mater ; : e2304067, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597369

RESUMO

The hypoxic microenvironment of solid tumors severely lowers the efficacy of oxygen-dependent photodynamic therapy (PDT). The development of hypoxia-tolerant photosensitizers for PDT is an urgent requirement. In this study, a novel rhenium complex (Re-TTPY) to develop a "closed-loop" therapy based on PDT-induced ferroptosis and immune therapy is reported. Due to its electron donor-acceptor (D-A) structure, Re-TTPY undergoes energy transfer and electron transfer processes under 550 nm light irradiation and displays hypoxia-tolerant type I/II combined PDT capability, which can generate 1O2, O2 -, and ·OH simultaneously. Further, the reactive oxygen species (ROSs) leads to the depletion of 1,4-dihydronicotinamide adenine dinucleotide (NADH), glutathione peroxidase 4 (GPX4), and glutathione (GSH). As a result, ferroptosis occurs in cells, simultaneously triggers immunogenic cell death (ICD), and promotes the maturation of dendritic cells (DCs) and infiltration of T cells. The release of interferon-γ (IFN-γ) by CD8+ T cells downregulates the expression of GPX4, further enhancing the occurrence of ferroptosis, and thereby, forming a mutually reinforcing "closed-loop" therapeutic approach.

4.
J Med Chem ; 67(2): 1336-1346, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38183413

RESUMO

Due to cell mutation and self-adaptation, the application of clinical drugs with early epidermal growth factor receptor (EGFR)-targeted inhibitors is severely limited. To overcome this limitation, herein, the synthesis and in-depth biological evaluation of an erlotinib-platinum(II) complex as an EGFR-targeted anticancer agent is reported. The metal complex is able to self-assemble inside an aqueous solution and readily form nanostructures with strong photophysical properties. While being poorly toxic toward healthy cells and upon treatment in the dark, the compound was able to induce a cytotoxic effect in the very low micromolar range upon irradiation against EGFR overexpressing (drug resistant) human lung cancer cells as well as multicellular tumor spheroids. Mechanistic insights revealed that the compound was able to selectively degrade the EGFR using the lysosomal degradation pathway upon generation of singlet oxygen at the EGFR. We are confident that this work will open new avenues for the treatment of EGFR-overexpressing tumors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Platina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
5.
Phys Chem Chem Phys ; 25(29): 20001-20008, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37461395

RESUMO

The hypoxic microenvironment and drug resistance of cancer cells have become a huge threat for clinical anticancer therapy. Anticancer phototherapy providing spatial and temporal control over drug activation may conquer this problem. Herein, we report a novel photoactivated Ru(II) complex (Ru2) with multiple activities including photochemotherapy, photodynamic and photocatalytic therapy, and endoperoxide formation. Upon white light irradiation, Ru2 can dissociate the coordinating ligands and form endoperoxides, produce diverse reactive oxygen species and catalytically oxidize cellular coenzymes. As a result, Ru2 shows promising antiproliferation activity toward cisplatin and 5-fluorouracil resistant tumor cell lines under normoxia and hypoxia. The multifunctional design strategy of metal-based anticancer drugs offers novel efficient therapeutics to combat drug-resistant cancer cells under hypoxia.


Assuntos
Antineoplásicos , Complexos de Coordenação , Fotoquimioterapia , Rutênio , Humanos , Oxigênio/metabolismo , Ligantes , Complexos de Coordenação/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Hipóxia , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio
6.
Chem Asian J ; 18(9): e202300047, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36894498

RESUMO

The rapid efflux of Pt-based chemotherapeutics by cancer cells is one of the major causes of drug resistance in clinically available drugs. Therefore, both the high cellular uptake as well as adequate retention efficiency of an anticancer agent are important factors to overcome drug resistance. Unfortunately, rapid and efficient quantification of metallic drug concentration in individual cancer cells still remains a tricky problem. Herein, with the help of newly developed single cell inductively coupled plasma mass spectrometry (SC-ICP-MS), we have found that the well-known Ru(II)-based complex, Ru3, displayed remarkable intracellular uptake and retention efficiency in every single cancer cell with high photocatalytic therapeutic activity to overcome cisplatin resistance. Moreover, Ru3 has shown sensational photocatalytic anticancer properties with excellent in-vitro and in-vivo biocompatibility under light exposure.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Humanos , Detecção Precoce de Câncer , Antineoplásicos/farmacologia , Antineoplásicos/química , Cisplatino/química , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
7.
J Med Chem ; 66(7): 4840-4848, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36966514

RESUMO

Photoactive antibacterial therapy is one of the novel therapeutic methods that has great application potential and prospects for curbing bacterial infections. In this work, a photoactivated iridium complex (Ir-Cl) is synthesized for photoactive antibacterial research. Ir-Cl exhibits photoacidolysis, which can generate H+ and be converted into a photolysis product Ir-OH under blue light irradiation. At the meantime, this process is accompanied by 1O2 generation. Notably, Ir-Cl can selectively permeate S. aureus and exhibit excellent photoactive antibacterial activity. Mechanism studies show that Ir-Cl can ablate bacterial membranes and biofilms under light irradiation. Metabolomics analysis proves that Ir-Cl with light exposure mainly disturbs some amino acids' degradation (e.g., valine, leucine, isoleucine, arginine) and pyrimidine metabolism, which indirectly causes the ablation of biofilms and ultimately produces irreversible damage to S. aureus. This work provides guidance for metal complexes in antibacterial application.


Assuntos
Complexos de Coordenação , Irídio , Irídio/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Luz
8.
Angew Chem Int Ed Engl ; 62(14): e202301344, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36749111

RESUMO

The photoisomerization-induced cytotoxicity in photopharmacology provides a unique pathway for phototherapy because it is independent of endogenous oxygen. In this study, we developed a biosafe photoisomerizable zinc(II) complex (Zn1), which releases its trans ligand (trans-L1) after being irradiated with blue light. This causes the complex to undergo photoisomerization and produce the toxic cis product (cis-L1) and generate singlet oxygen (1 O2 ). The resulting series of events caused impressive phototoxicity in hypoxic A431 skin cancer cells, as well as in a tumor model in vivo. Interestingly, Zn1 was able to inhibit tumor microtubule polymerization, while still showing good biocompatibility and biosafety in vivo. This photoisomerizable zinc(II) complex provides a novel strategy for addressing the oxygen-dependent limitation of traditional photodynamic therapy.


Assuntos
Fotoquimioterapia , Zinco , Polimerização , Fototerapia , Oxigênio , Microtúbulos
9.
Chem Commun (Camb) ; 59(21): 3083-3086, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36807352

RESUMO

A novel axisymmetric bis-tridentate Ir(III) photocatalyst (Ir3) with synergetic type I/II photosensitization and photocatalytic activity was reported. Ir3 exhibited high photocytotoxicity toward drug-resistant cancer cells under normoxia and hypoxia. The photoactivated anticancer mechanism of Ir3 were investigated in detail. Overall, this new photo-redox catalyst can overcome hypoxia and drug resistance-related problems in clinical anticancer therapy.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fototerapia , Catálise , Hipóxia/tratamento farmacológico
10.
J Org Chem ; 88(1): 626-631, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36522290

RESUMO

Recently, interest has been given to developing photocatalytic anticancer drugs. This area of research is dominated by metal complexes. Here, we report the potential of lysosome/mitochondria targeting cyanine appended bipyridine compounds as the organic photocatalytic anticancer agents. The organocatalyst (bpyPCN) not only exhibits light-induced NADH oxidation but also generates intracellular ROS to demonstrate anticancer activity. This is the first example of organic compound induced catalytic NADH photo-oxidation in an aqueous solution and in cancer cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , 2,2'-Dipiridil/farmacologia , Oxirredução , NAD , Antineoplásicos/farmacologia
11.
Chemistry ; 28(72): e202202233, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36184567

RESUMO

Photodynamic therapy (PDT) for cancer treatment has garnered tremendous attention with its promising non-invasiveness, low side effects, and spatiotemporal selectivity. However, the hypoxic microenvironment in solid tumours remains a serious resistant factor to reducing the effects of PDT. Endoperoxides are successfully utilized as the chemical storage or supplier of singlet oxygen (1 O2 ), the active substance for PDT in materials and other domains. Recent reports indicated that this type of compound could remarkably enhance the therapeutic effects of PDT under hypoxia. This concept mainly introduces a few representative endoperoxides and the outlook of their potent application for treating hypoxic cancer cells.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Hipóxia/tratamento farmacológico , Oxigênio Singlete , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes , Linhagem Celular Tumoral , Oxigênio , Microambiente Tumoral
12.
Dalton Trans ; 51(29): 10875-10879, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35796219

RESUMO

Rationally-designed glucose-appended Ir(III) photo-catalysts ([Ir(N,C)2(N,N-Glc)]+, Ir1-Ir3) show visible light-induced catalytic NAD(P)H oxidation in aqueous solution. The highly in vivo biocompatible complex, Ir3, shows lysosome and mitochondria targeting necro-apoptotic photo-cytotoxicity against various cancer cell lines and multicellular spheroids, while remaining non-toxic in the dark.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Glucose , Humanos , Irídio/farmacologia , Mitocôndrias , Neoplasias/tratamento farmacológico
13.
ChemMedChem ; 17(10): e202200119, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35384336

RESUMO

Photodynamic therapy (PDT), a non-/minimally invasive cancer treatment method, has the advantages of low side effects, high selectivity, and low drug resistance. It is currently a popular cancer treatment method. However, given the shortcomings of photosensitizers such as poor photostability, poor water solubility, and short half-life in vivo when used alone, the development of photosensitizer nano-delivery platforms has always been a research hotspot to overcome these shortcomings. In the human body, various types of cells generally release bilayer extracellular vesicles known as exosomes. Compared with traditional materials, exosomes are currently an ideal drug delivery platform due to their homology, low immunogenicity, easy modification, high biocompatibility, and natural carrying capacity. Therefore, in this concept, we focus on the research status and prospects of engineered exosome-based photosensitizer nano-delivery platforms in cancer PDT.


Assuntos
Exossomos , Neoplasias , Fotoquimioterapia , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Solubilidade
14.
Chembiochem ; 23(15): e202200201, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35438233

RESUMO

Immunotherapy has made great progress in clinical cancer treatment in recent years, but its therapeutic efficacy is significantly limited by the lack of immunogenicity in the tumor microenvironment. Pyroptosis is a type of programmed cell death in which the dying cancer cells produce inflammatory cytokines to relieve the immuno-suppressive microenvironment and thus increase anti-tumor immunity. Reactive oxygen species (ROS) produced during photodynamic therapy (PDT) are one of the efficient activators that induce pyroptosis. Recently, a few photosensitizers have emerged with the ability to induce immunogenic cancer cell death via pyroptosis, opening a new field for PDT. This highlight introduces the latest research on antitumor strategies achieved by the combination of immunotherapy and photodynamic therapy through photo-pyroptosis.


Assuntos
Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Piroptose , Microambiente Tumoral
15.
Angew Chem Int Ed Engl ; 61(23): e202202098, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35258153

RESUMO

Quantifying the content of metal-based anticancer drugs within single cancer cells remains a challenge. Here, we used single-cell inductively coupled plasma mass spectrometry to study the uptake and retention of mononuclear (Ir1) and dinuclear (Ir2) IrIII photoredox catalysts. This method allowed rapid and precise quantification of the drug in individual cancer cells. Importantly, Ir2 showed a significant synergism but not an additive effect for NAD(P)H photocatalytic oxidation. The lysosome-targeting Ir2 showed low dark toxicity in vitro and in vivo. Ir2 exhibited high photocatalytic therapeutic efficiency at 525 nm with an excellent photo-index in vitro and in tumor-bearing mice model. Interestingly, the photocatalytic anticancer profile of the dinuclear Ir2 was much better than the mononuclear Ir1, indicating for the first time that dinuclear metal-based photocatalysts can be applied for photocatalytic anticancer treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Irídio/química , Lisossomos , Camundongos
16.
Chemistry ; 28(3): e202103346, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34755401

RESUMO

Four photo-catalysts of the general formula [Ir(CO6/ppy)2 (L)]Cl where CO6=coumarin 6 (Ir1-Ir3), ppy=2-phenylpyridine (Ir4), L=4'-(3,5-di-tert-butylphenyl)-2,2' : 6',2''-terpyridine (Ir1), 4'-(3,5-bis(trifluoromethyl)phenyl)-2,2' : 6',2''-terpyridine (Ir2 and Ir4), and 4-([2,2' : 6',2''-terpyridin]-4'-yl)-N,N-dimethylaniline (Ir3) were synthesized and characterized. These photostable photo-catalysts (Ir1-Ir3) showed strong visible light absorption between 400-550 nm. Upon light irradiation (465 and 525 nm), Ir1-Ir3 generated singlet oxygen and induced rapidly photo-catalytic oxidation of cellular coenzymes NAD(P)H. Ir1-Ir3 showed time-dependent cellular uptake with excellent intracellular retention efficiency. Upon green light irradiation (525 nm), Ir2 provided a much higher photo-index (PI=793) than the clinically used photosensitizer, 5-aminolevulinicacid (5-ALA, PI>30) against HeLa cancer cells. The observed necro-apoptotic anticancer activity of Ir2 was due to the Ir2 triggered photo-induced intracellular redox imbalance (by NAD(P)H oxidation and ROS generation) and change in the mitochondrial membrane potential. Remarkably, Ir2 showed in vivo photo-induced catalytic anticancer activity in mouse models.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cumarínicos , Irídio , Camundongos , Oxirredução
17.
Nat Commun ; 12(1): 5001, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408151

RESUMO

As a basic structure of most polypyridinal metal complexes, [Ru(bpy)3]2+, has the advantages of simple structure, facile synthesis and high yield, which has great potential for scientific research and application. However, sonodynamic therapy (SDT) performance of [Ru(bpy)3]2+ has not been investigated so far. SDT can overcome the tissue-penetration and phototoxicity problems compared to photodynamic therapy. Here, we report that [Ru(bpy)3]2+ is a highly potent sonosensitizer and sonocatalyst for sonotherapy in vitro and in vivo. [Ru(bpy)3]2+ can produce singlet oxygen (1O2) and sono-oxidize endogenous 1,4-dihydronicotinamide adenine dinucleotide (NADH) under ultrasound (US) stimulation in cancer cells. Furthermore, [Ru(bpy)3]2+ enables effective destruction of mice tumors, and the therapeutic effect can reach deep tissues over 10 cm under US irradiation. This work paves a way for polypyridinal metal complexes to be applied to the noninvasive precise sonotherapy of cancer.


Assuntos
Antineoplásicos/química , Neoplasias/terapia , Rutênio/química , Terapia por Ultrassom , Animais , Antineoplásicos/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos BALB C , NAD/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxirredução/efeitos da radiação , Porfirinas/química , Rutênio/administração & dosagem , Oxigênio Singlete/metabolismo , Ondas Ultrassônicas
18.
ACS Appl Mater Interfaces ; 13(24): 27934-27944, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34101408

RESUMO

Due to conventional photodynamic therapy encountering serious problems of phototoxicity and low tissue-penetrating depth of light, other dynamic therapy-based therapeutic methods such as sonodynamic therapy (SDT) are expected to be developed. To improve the therapeutic response to SDT, more effective sonosensitizers are imperative. In this study, a novel water-soluble iridium(III)-porphyrin sonosensitizer (IrTMPPS) was synthesized and used for SDT. IrTMPPS generated ample singlet oxygen (1O2) under US irradiation and especially showed distinguished US-activatable abilities at more than 10 cm deep-tissue depths. Interestingly, under US irradiation, IrTMPPS sonocatalytically oxidized intracellular NADH, which would enhance SDT efficiency by breaking the redox balance in the tumor. Moreover, IrTMPPS displayed great sonocytotoxicity toward various cancer cells, and in vivo experiments demonstrated efficient tumor inhibition and anti-metastasis to the lungs in the presence of IrTMPPS and US irradiation. This report gives a novel idea of metal-based sonosensitizers for sonotherapy by fully taking advantage of non-invasiveness, water solubility, and deep tumor therapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Porfirinas/uso terapêutico , Radiossensibilizantes/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Irídio/química , Irídio/uso terapêutico , Irídio/toxicidade , Camundongos , NAD/química , NAD/metabolismo , Neoplasias/patologia , Oxirredução , Porfirinas/síntese química , Porfirinas/toxicidade , Radiossensibilizantes/síntese química , Radiossensibilizantes/toxicidade , Oxigênio Singlete/metabolismo , Ondas Ultrassônicas , Peixe-Zebra
19.
ChemMedChem ; 16(16): 2480-2486, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34028190

RESUMO

Considering the high increase in mortality caused by cancer in recent years, cancer drugs with novel mechanisms of anticancer action are urgently needed to overcome the drawbacks of platinum-based chemotherapeutics. Recently, in the area of metal-based cancer drug development research, the concept of catalytic cancer drugs has been introduced with organometallic RuII , OsII , RhIII and IrIII complexes. These complexes are reported as catalysts for many important biological transformations in cancer cells such as nicotinamide adenine dinucleotide (NAD(P)H) oxidation to NAD+ , reduction of NAD+ to NADH, and reduction of pyruvate to lactate. These unnatural intracellular transformations with catalytic and nontoxic doses of metal complexes are known to severely perturb several important biochemical pathways and could be the antecedent of next-generation catalytic cancer drug development. In this concept, we delineate the prospects of such recently reported organometallic RuII , OsII , RhIII and IrIII complexes as future catalytic cancer drugs. This new approach has the potential to deliver new cancer drug candidates.


Assuntos
Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Metais Pesados/farmacologia , Compostos Organometálicos/farmacologia , Antineoplásicos/química , Catálise , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Metais Pesados/química , Estrutura Molecular , Compostos Organometálicos/química , Relação Estrutura-Atividade
20.
Angew Chem Int Ed Engl ; 60(17): 9474-9479, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33434379

RESUMO

Photocatalytic anticancer profile of a IrIII photocatalyst (Ir3) with strong light absorption, high turnover frequency, and excellent biocompatibility is reported. Ir3 showed selective photo-cytotoxicity against cisplatin- and sorafenib-resistant cell lines while remaining dormant to normal cell lines in the dark. Ir3 exhibited excellent photo-catalytic oxidation of cellular co-enzyme, the reduced nicotinamide adenine dinucleotide phosphate (NADPH), and amino acids via a single electron transfer mechanism. The photo-induced intracellular redox imbalance and change in mitochondrial membrane potential resulted in necrosis and apoptosis of cancer cells. Importantly, Ir3 exhibited high biocompatibility and photo-catalytic anticancer efficiency as evident from in vivo zebrafish and mouse cancer models. To the best of our knowledge, Ir3 is the first IrIII based photocatalyst with such a high biocompatibility and photocatalytic anticancer therapeutic effect.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Complexos de Coordenação/farmacologia , Irídio/farmacologia , Fotoquimioterapia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Irídio/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA